[AR] Re: Fin stability and flutter margin

  • From: Robert Watzlavick <rocket@xxxxxxxxxxxxxx>
  • To: arocket@xxxxxxxxxxxxx, rebel without a job <rebelwithoutajob@xxxxxxxxxxx>
  • Date: Sun, 30 Dec 2018 06:44:02 -0600

OpenRocket shows Mach 0.75 for the 10 second burn and 0.92 for the 15 second burn.  The tanks are small and heavy but I'm not trying to push the envelope for this first launch.  I'll check out FinSim.  The Baxter rail at FAR is 60 feet long so there should be plenty of velocity off the rail.

The component and tank layout worked out favorably with a CG variation between full and empty of only 2.8 inches and it moves slightly forward as it burns.  I wish it was easier in these sim programs to create motor files for liquids.  Ideally you would specify some tank parameters and depletion rates instead of having to make a fake motor mount in the middle of the rocket to place the "motor".  OpenRocket 15.03 does plot both CG and Cp though and it shows a 3.0 of stability margin at at start and 3.5 at burnout.  At apogee it drops rapidly to  -.75 so I'm not sure what to make about that.

I have RasAero so I'll try it as well.

Thanks for the reply!
-Bob

On 12/29/18 10:14 PM, rebel without a job wrote:

(Disclaimer: engineering school dropout)

Flutter:

What’s the velocity range you’re looking at? For those of us operating normal 
atmospheres, flutter is mostly an interaction between aerodynamic (speed) 
forces and inertia. Every aerostructure has a flutter speed where that 
interaction becomes resonant. Generally speaking, probability of flutter 
increases with higher aero forces (speed), lower damping (stiffness) and longer 
moment arms (fin CG further away from joint)

At a first order of analysis, something that propellant to mass ratio likely 
won’t be moving fast enough to flutter an Al fin. I’m guessing M1.5 at max? 
1/8th of an inch of Al moving at under M2 isn’t going anywhere, assuming that 
the fin to case joint is good and stiff. People regularly hit M1.5 with 1/8” 
plywood fins bonded with wood glue to an internal motor tube. You can hit M2 
with 3/32” G10 fins surface mounted with nothing but a solid fillet of 
RocketPoxy.

If you want to prove it to yourself, there’s FinSim and other similar programs 
out there. You’re well within or better than the mainstream of mass, speed, and 
materials used in garden-variety HPR.


Stability:

In general, you’re on the right track. It’s just a righting arm, and half the 
force at twice the distance is the same arm. Fins further back is better.

You gain less than you might think putting shorter fins further back though 
because your boundary layer is thicker than you might think, and you want the 
fin to stick out into clean(ish), laminar(ish) air to provide that righting 
arm. Cutting fin span by 20% might cut effective area by twice that.

The generally accepted practice is: trailing edge of your fin within a caliber 
of the base, at least one caliber of span, and at least 2-3 calibers of root 
edge. Take a look at fiberglass rocket kits in about your size range.

There’s two points you want to be looking at: off the rail, and the transonic 
range.

Off the rail the figure of merit is ratio between your speed and wind speed. 
Generally you want 1-2 cal of stability. Too little and you’re unstable, but 
too much and you’ll weathercock into the wind. You can make off the rail less 
worrisome by going faster. Since your T/W is fixed, solve this by having a 
sufficiently long rail.

Transonic range:  The bad news is that as a biprop pilot at burnout you’re 
going to have max-forward CP and max-aft CG, which means your stability margin 
will decrease as you fly.

At this point your CP is going to move forward. OpenRocket allows you to plot 
CP vs speed or time. Unfortunately it won’t plot CG vs time, and in the case of 
a liquid, CG moves back (bad) over time. While OR is generally useful, in this 
case you might want to override your CG to max aft (no fuel, worst possible) 
and ensure that you have 1.5 cal stability throughout the flight.


Trusting simulations:

You may also, time permitting, sim with RasAero as well. With as much time as 
you’ve put into this rocket, it’s best to have two opinions. For a third 
opinion, take a look at a Madcow or Wildman rocket in about your size range and 
see if your fin size and placement is generally similar. Those are dead in the 
middle of the envelope and make a good sanity check.

Feel free to contact me off list.

On Dec 29, 2018, at 7:44 PM, Robert Watzlavick <rocket@xxxxxxxxxxxxxx> wrote:

I've sized the fins for my 250 lbf biprop based on common guidelines I found 
but I'd appreciate a sanity check.  The rocket will be 14 feet long, 6 inches 
in diameter and will weigh about 51 lb empty with a propellant load  between 11 
- 16 lb (10-15 second burn).  I was planning on using four aluminum trapezoidal 
fins with a 10 inch root chord, 4 inch tip chord, 6 inch height, and 0.125 
inches thick.  From the flutter calculations in Apogee Newsletter 411, this 
should provide a 50% flutter margin at burnout.  Is that reasonable?

The fin mounts allow position adjustment of a few inches in 1 inch increments 
but I was considering configuring them for somewhere between 2 and 3 calibers 
of stability.  Is that a reasonable balance between stability and tendency to 
weathercock?  I plan to fly out of FAR on the Baxter rail but I'm not sure what 
the typical winds are there.

When placing the fins to achieve a target Cp, is there a practical difference 
between a taller fin closer to the CG vs. a shorter fin farther back?  I would 
think the aerodynamic moment would be the same either way for a given set of 
conditions .  Shorter fins farther back would be preferable from a weight and 
drag standpoint.

I'm using OpenRocket for simulation and the results seem reasonable over a wind 
range of 0-15 mph.

Thanks,
-Bob


Other related posts: