[AR] Re: Updated custom ball valve

  • From: Robert Watzlavick <rocket@xxxxxxxxxxxxxx>
  • To: arocket@xxxxxxxxxxxxx
  • Date: Sun, 22 May 2016 22:12:16 -0500

Here's part of a Machine Design article I found on Dynaroll's website:

---------------
Regardless of component design, bearings need preload to remove axial play and boost axial and radial stiffness. Applying preload to inner rings of bearing pairs maximizes stiffness. Conversely, loading outer rings lowers stiffness. There are three basic preload methods: springs, solid clamping, and deadweight. Springs press together inner rings or force apart outer races. Springs ease assembly though system stiffness suffers because spring rate rather than raceway-ball elasticity controls stiffness. Springs also minimize relative thermal expansions between mating parts, important for assemblies of different materials exposed to temperature extremes. High-speed applications typically use spring preload as well. For Belleville or wavy-washer springs, tolerance stack up of mating parts can nearly equal maximum allowable compression of the springs themselves. Use a low-rate spring to minimize preload variations.

Solid clamping removes axial play by machining components to precise dimensions. The method produces stiff assemblies and cuts component count. However, normal tolerances in bearing axial play make it difficult to do in practice. Components and bearings must be tolerance matched with high precision or bearings may suffer raceway brinelling (overloading) or have insufficient preload. Precision-matched, duplex-pair
bearings solve the tolerance problem but cost significantly more than standard bearings.
---------------

I'm a bit confused by that because if you pull the inner races together, balance of forces mean the outer races will be pushed out by an equal force. I'm not really worried about bearing life though because this isn't a continuous rotary application. It will probably be actuated on the order of a 100-200 times max.

I agree with your 3rd point that to pull the inner races together, the outer sleeve needs to be slightly longer than the inner one. I screwed that up so thanks for catching that. I don't think there will be any extra load on the ball because 1) the shaft/stem is not pressed against the slot in the ball, there is some clearance there, and 2) the internal pressure will tend to push the shaft out. I believe the ball will stay put since the body seals are contoured to fit the ball.

I'm not sure I understand your last paragraph. The only reason I used a flanged bearing at the top is to anchor it in place between the valve body and retainer plate so everything is relative to that top bearing. Otherwise, when not pressure loaded, the stem could be forced down slightly and crush the seal.

Thanks!
-Bob



On 05/22/2016 08:11 PM, Norman Yarvin wrote:

I'll third the Belleville washer; this thing will be seeing a fair bit
of thermal expansion and contraction, so a spring washer to keep the
preload from varying too much is a good idea.

Not that I've really figured out what the idea is with the preload.
Looking at your diagram:

        
http://www.watzlavick.com/robert/rocket/rocket1/drawings/ball_valve_3_assy-annotated.pdf

preload could come from:

        1. Compressing the inner races vertically, via the preload
        nut, whereupon they bulge out horizontally (per Poisson's
        ratio).

        2. Press fitting the bearings onto the shaft and into the
        hole, which you've been doing from the start but obviously
        wasn't enough (though probably would have been with a really
        hard press fit),

        3. Forcing a bearing's races in opposite directions (on the
        diagram, one up and the other down), which you may be doing
        some of, via the flange on the top bearing being opposed to
        the valve ball, and via the two bearing spacer sleeves being
        slightly different lengths.  But to get preload on the bottom
        bearing via that last, you'd want the outer sleeve longer,
        not the inner one... though that is probably how things end up
        once the preload nut is tightened and the whole stack gets
        compressed.

You'll also get some of #3 from thermal expansion.  As a rough figure,
with the housing being aluminum and the stem stainless, the difference
in thermal expansion coefficients seems to be about 5 parts per
million per degree C; with 200 degrees C temperature change, that's 1
part per thousand.

But as regards preload coming from the flange on the top bearing being
opposed to the valve ball (the flange pulling the outer race up, and
the ball, via the preload nut, pulling the inner race down), that is
the most vulnerable to thermal expansion of these sorts of preload,
and also the least desirable, since it adds to the friction of the
valve ball.  Doing a quick search on those part numbers, the bearings
you've specified are "deep groove"; there are also "shallow groove"
bearings which allow more of a vertical float.  (Not that deep groove
bearings will necessarily be a problem here -- in fact, I doubt they
will, since the dimensions are relatively small -- but if they do
cause problems, there are alternatives.)





Other related posts: