[AR] Re: Catching Oumuamua

  • From: Henry Vanderbilt <hvanderbilt@xxxxxxxxxxxxxx>
  • To: arocket@xxxxxxxxxxxxx
  • Date: Sat, 27 Feb 2021 20:24:51 -0700

Bill,

Something I touched on last night indeed strongly implies a shotgun approach to reacquiring Oumuamua at 110 AU, now that I've looked at it again in daylight.  For an object under constant illumination, all-else-equal telescope detection range varies directly with the mirror diameter ratios, but with only the square root of the mirror area ratios.  EG, halve the mirror diameter, for one-quarter the area, and you still get 1/sqrt (area1.0/area0.25) AKA one-half the max detection range of the full-diameter-mirror instrument.

But if you've halved the mirror diameter, to a first approximation you've halved all the telescope's dimensions and thus reduced its mass by a factor of 2^3, or eight.  Half the range for an eighth the mass.  So until you get down to where minimum-gauge factors start reducing the mass savings, there's a BIG payoff in the location-uncertainty area you can cover via subdividing your available telescope mass into a swarm of smaller scopes.

My guess, small-U-number cubesat equivalents (3U?  1U?)  would be currently doable, without pinning success on the starchip technology coming online as fast as needed with no hitches.

Mind, I think there's a case to be made this shotgun swarm should be specialized pathfinders for a larger main probe following some distance behind, not each also equipped to be the primary imager if it happens to pass closest to Oumuamua.

My reasoning on this:  I am NOT any kind of expert in telescope design, but I do know that all else VERY seldom is equal.  I gather there are large tradeoffs available between things like maximum image-detail resolution, high angular resolution, and maximum faint-object sensitivity.  I suspect strongly (but cannot put numbers on) that we would be best off optimizing the reacquisition sub-sat swarm for faint-object sensitivity, with only modest image-detail and angular resolution.  Also, since they wouldn't be expected to do the primary Oumuamua imaging, they'd have only modest comms data-rate requirements.  All these adding up to significantly smaller cheaper individual shotgun-sats, for less total mission mass to cover a given uncertainty cone (whatever that might turn out to be.)

All the shotgun reacquisition sub-sats should have to do is scan for appropriate faint objects, and when they spot one, signal back to the main spacecraft "I see something, roughly HERE".   The main spacecraft then tells other nearby sub-sats to look THERE also, and if it is indeed Oumuamua, maneuvers with time in hand for a close flyby, carrying with it the relatively massy hi-res imager (and other instruments?), maneuvering delta-V, and high-bandwidth-to-back-here comms hardware.

Henry

On 2/27/2021 9:00 AM, William Claybaugh wrote:

Henry:

These sorts of targeting requirements suggest to me that a shotgun is required rather than a bullet:  dozens of small cameras that can be released a few AU before encounter to assure some will have a close pass. A few hundred of Milner’s starchips would seem perfect, as well as offering a chance to test that tech.

An alternative that increases transit time would be to use electric propulsion to slow down on final....

I would also like to understand how a true solar gravity assist might work: for an object not bound to the dynamical system (which this probe becomes near perihelion) it should be possible to extract energy from the sun’s orbit around the galaxy.  That seems like it could in principle be a lot of delta-v for so small a mass compared to the mass of the sun.

I am also intrigued by the solar water rocket if 1000 sec. range Isp can be obtained.

Anyone interested might want to catch up on JPL’s “1000 AU” mission studies, which have addressed many of the issues this mission would face.

Bill

On Fri, Feb 26, 2021 at 10:41 PM Henry Vanderbilt <hvanderbilt@xxxxxxxxxxxxxx <mailto:hvanderbilt@xxxxxxxxxxxxxx>> wrote:

    Bill,

    When in doubt, pin down some aspect of the problem you can
    quantify, then see what else falls into place.  In this case, at
    110 AU out, Oumuamua will be seeing 1/3025th the solar
    illumination it did at 2 AU out, our
    2-AU-Hubble-detection-distance illumination level.

    Reducing the at-object illumination 3025 times reduces the
    detection distance sqrt 3025 or 55 times.  2AU/55 is roughly 5.4M
    km.  So if you dragged along a 1.4m Hubble-equivalent mirror on
    your 60 km/s probe, you could nominally spot Oumuamua 5.4M km
    away.  (Leaving aside for now how fast you could thoroughly scan
    that angular size slice of sky.)

    Which at 34 km/s closing speed is 44 hours before you zip past
    it.  If you have 1 km/s fast-burn course correction delta V
    available, that's a roughly 150,000 km (or about 1/1000th AU)
    error radius you could correct for.

    1/1000th AU over 110 AU is about one part in 90,000.  Do we have
    Oumuamua's trajectory to that degree of accuracy?  Much more? 
    Much less?  Someone around here has gotta know, or know someone
    who knows.

    Meanwhile, you now know a couple of the spacecraft variables
    you'll be trading: Telescope size on the probe - smaller-mirror
    detection range should drop roughly as the square root of the
    reduction of the mirror area, EG a quarter the area (half the
    diameter) should give half the detection range.  Also, how much
    fast-burn final-correction deltaV can/should be carried, and in
    what form.

    Overall, I'm beginning to get a good feeling that this mission can
    likely be done within current SOTA (even before we start looking
    for clever optimizations) simply by throwing LOTS of brute-force
    mass at it.  BFM is getting quite a bit cheaper - consider
    multiple F9H payloads docked in LEO then sent off.  The 60 km/s
    apparently is doable per GH via a couple quite large solid stages
    burned during a close slingshot flyby of Jupiter.  You'll need one
    or two proportionately larger stages to get this large package to
    Jupiter fast in the first place.  And the probe itself is likely
    to need quite substantial onboard optics.  All pending the
    inevitable clever optimizations, of course.

    Mind, the preceding was ginned up late and seriously
    undercaffeinated.  I will look at it again in the am and see if I
    can spot any gross errors before others kindly point any such out...


    Henry




    On 2/26/2021 8:00 PM, William Claybaugh wrote:
    Henry:

    Nice top level analysis.

    My only question is whether it is as dark as currently assumed
    (put another way, whether it is much smaller than currently
    assumed).  If it is small and very reflective—in keeping with it
    not being detectable in the IR, despite passing the sun at .25
    AU—then reflected sunlight may be much stronger at 100 AU than
    current estimates.

    I agree that hope is no basis for mission planning and that
    finding it may require, in accordance with your estimate, some on
    board capability.  I’ve no basis for estimating that mass.

    Bill

    On Fri, Feb 26, 2021 at 7:50 PM Henry Vanderbilt
    <hvanderbilt@xxxxxxxxxxxxxx <mailto:hvanderbilt@xxxxxxxxxxxxxx>>
    wrote:

        OK, if in fact it'll continue to be visible that far out,
        plotting a course for flyby does get much simpler.  Seems
        unlikely for something that small and (by that point) that
        poorly lit, but "seems" is not any sort of numeric
        evaluation.  OK, let me try for ballpark numbers...

        Per the "Astronomy" article at
        https://astronomy.com/magazine/2020/02/our-first-interstellar-visitor
        , Oumuamua passed closest to Earthoutbound, .36 AU away, at
        26 kps on 10/14/17, and ceased being visible even to the
        Hubble (1.4m mirror) "after January" of 2018.

        So, ~110 days at 26 kps is ~247M km or a bit over 1.6 AU,
        plus the .36 AU flyby distance gives us ~2 AU Hubble max
        visibility distance, near as makes no difference.  (Probably
        a bit less when you add the vectors but let's assume on the
        generous side.)

        Oumuamua is then also roughly 2 AU from the Sun, working back
        to the 9/9/17 closest solar approach.  So, solar illumination
        of the object is (very) roughly 1/4 of the 1 AU-from-Sun
        value.  So, 2 AU from Hubble at 2-AU-from-Sun illumination is
        the rough edge of current observability.  After 20 years at
        26 kps, Oumuamua will be about 110 AU away from both Earth
        telescopes and the Sun, about 55 times as far.

        A 30m mirror has about 156 times the area, thus 156 times the
        light-gathering, of Hubble's 1.4m mirror.  Three such 30m
        meter mirrors combined somehow and we get about 470 times
        Hubble's light-gathering.

        I assume that the primary illumination of Oumuamua will be
        the Sun even at 110 AU. Without running the numbers, it
        should still be far brighter than the general starlight.
        (Someone will no doubt correct me here if needed.)

        So reflected sunlight from Oumuamua arriving back at Earth
        will be declining as roughly the fourth power of the
        distance, with the approximation getting closer as the
        distance from Sun to Earth becomes a smaller fraction of the
        total.  So, 470 times the light-gathering power of Hubble
        should yield fourth-root-of-470, or 4.65, times Hubble's ~2
        AU Oumuamua range.

        So either I dropped a decimal/made a wrong assumption, or
        alas even with multiple 30m telescopes we won't be able to
        track Oumuamua past 10 AU or so.  In which case reacquiring a
        track on it for the flyby would be a significant mission
        parameter.


        Henry



        On 2/26/2021 5:06 PM, William Claybaugh wrote:
        Henry:

        I’m thinking that no special onboard imaging capability is
        required.

        There are three order 30 meter optical telescopes coming
        online in the next five years;  *if* my top level analysis
        is correct (which question I am asking), the flyby would
        occur out in the Kuiper belt about five times further than
        Pluto.

        That appears to be within the imaging capability of those
        telescopes wrt the approximate position of the target.

        A second level of analysis might find different, but this is
        an amateur forum....

        Bill



        On Fri, Feb 26, 2021 at 4:24 PM Henry Vanderbilt
        <hvanderbilt@xxxxxxxxxxxxxx
        <mailto:hvanderbilt@xxxxxxxxxxxxxx>> wrote:

            I'm thoroughly in favor of catching and taking a far
            closer look at Oumuamua.  Even if it isn't an artifact,
            it's weird enough that we're bound to learn something
            new and interesting.  It had never occurred to me to
            even ask if the mission might actually be in the same
            county as current SOTA though - thanks for that!

            I have no answers, mind.  But another useful question
            occurs: How massy a combination of telescope and
            terminal propulsion will this mission need to reliably
            spot Oumuamua early enough to have time to correct
            course for a close flyby?  This would seem central to
            sizing the spacecraft.  (Or multiple spacecraft, if the
            location uncertainties point toward a shotgun approach,
            or perhaps toward some sort of
            initial-locator/followup-close-flyby mission.)

            I assume some level of imprecision in our knowledge of
            Oumuamua's departing course.  Plus some additional
            imprecision in our knowledge of what gravitational and
            other influences there may be on it over the next
            twenty-ish years - the major planets on its way out
            should be fairly predictable, but it'd suck to miss the
            flyby because Oumuamua did a close pass on an unknown
            Kuiper belt object a few years on. A first pass at
            defining the likely cone of uncertainty would be useful,
            if anyone has the tools handy for that.

            Henry

            On 2/26/2021 3:29 PM, William Claybaugh wrote:
            Since we are not talking about homebuilt rockets, I was
            wondering if we might talk about homebuilt space missions:

            A top level analysis suggests it would take about 60 Km
            / sec to catch  in about 20 years.

            Another very top level analysis suggests that a gravity
            assist at Jupiter (solely to turn the plane from near
            ecliptic to near that of Oumuamua; near to but less
            than 90 degrees) followed by a 50 solar radii assist at
            the Sun (Parker is doing 10 radii as I recall but it
            carries way too much heat shield for this mission) can
            pretty certainly get to 50 km / sec.

            One of NASA Glenn’s Stirling cycle RTG’s tied to an
            existing commercial electric thruster appears capable
            of making up the difference with a big fuel tank.

            Assuming a New Horizons-like spacecraft, but much
            smaller, a flyby seems possible based on this very top
            level analysis.

            I’d be real interested in helpful comments.

            Bill




Other related posts: