[AR] Re: Falcon Heavy use cases

  • From: "Troy Prideaux" <troy@xxxxxxxxxxxxxxxxxxxxx>
  • To: <arocket@xxxxxxxxxxxxx>
  • Date: Fri, 9 Feb 2018 09:06:05 +1100

If what you're implying is true (and I'm of the perhaps naïve opinion it's 
close to it), then it's also a good reason for not shifting to LH for the upper 
stage.

Troy.



Just because a typical cost-plus vendor would cheerfully allow an upper stage
engine's mechanical and procedural details to diverge radically and 
expensively
from the sea-level version doesn't mean SpaceX would.  A difference in
fundamental motivations: Cost-plus means higher cost equals *higher* profits.
Commercial fixed-price, the opposite.  SpaceX demonstrably understands this.

So I'd be seriously surprised if SpaceX allowed the vast majority of vac 
Merlin
parts and procedures to diverge at all from the sea level version, for the 
precise
reason you cite, cost.

There's the vac nozzle extension, of course - but that's a passive radiator,
simple formed sheet metal (relatively expensive metal, yeah) and I'd be amazed
if it's involved during test-fires rather than bolted on after.  Simple 
mechanical
testing separate from the engine should reveal any nozzle extension problems
far cheaper than doing upper-stage engine tests in (expensive!) separate
vacuum facilities.

The mechanical attachment provisions for the extension on the cooled nozzle
are likely the biggest single physical part difference - assuming they don't 
just
put those on all nozzles for commonality.

And ignition provisions may or may not be slightly different between sea level
and altitude lightoff.  I'd guess, not much mechanical difference at all 
(maybe
some software procedural?) given that they relight core-stage sea-level 
engines
in vac for the initial braking burns.

Bottom line, I doubt SpaceX allowed vac Merlin costs to grow very much.


Which all begs the real question, as far as I'm concerned: F9H cries
out for a high-energy upper stage.

In the best of all worlds, an ACES stage scaled for the F9H would
provide very, very interesting capabilities.

Yes, and now that you've suggested it, I'm going to have to model that
combination.  I'll let you handle the politics of a ULA-SpaceX joint
venture.

I'd be fascinated to see what you might be able to share there.
Intuitively, it should make modest difference in F9H payload to LEO, with
increasing payload mass benefit the farther/faster the mission.

As for the politics, the obvious way to bypass that is if the government is 
the
too-high-volume-to-ignore customer for both SpaceX and ULA.  Or for SpaceX
and Blue Origin - a BE-3U might actually be sized about right for an 
F9H-lofted
upper stage.  And Blue also has current hydrogen-stage experience.  Not to
mention an existing stage flying in roughly the right size range - maybe check
out performance of a stripped-down BE-3U New Shepard on top of an F9H
also?..

(All this is in the context of a government program aimed at significant 
results
in relatively few years, of course.  In a context either purely commercial, 
longer-
term, or both, there's far less likelihood of such multi-vendor booster
cooperation - all three mentioned have their own long-term high-performance
integrated booster plans.)


Also, Schilling's three rules of space launch propulsion:

1. It is foolish to use anything but cheap, dense propellants in your
Earth launch stage.   You need thrust against gravity, and you
shouldn't much care about weight when it's just cheap rocket fuel and sheet
metal.

2. It is foolish to use anything but LOX/LH2 for your orbital
insertion stage.  You need Isp to build delta-V, and every pound of "cheap"
propellant has to be lofted halfway to orbit by an expensive booster.

3. It is foolish to use different propellants on different stages of
your rocket, because that makes every bit of hardware and every
operational procedure a complete duplication of effort.

Now go design a not-foolish space launch vehicle.  Elon has made his
choice, and in my experience most rocket scientists are fairly
stubborn about which of the three rules is "obviously" wrong or at
least less important than the other two.  Rocket plumbers may be more
pragmatic, of course, but I don't take Elon to be a plumber.

Well, Delta 4 certainly illustrates Rule 1.  With considerable help from 
Aerojet
doing a seriously piss-poor job of balancing sea-level and vac performance in
the RS-68, in my view... (Their answer: Neither!)

I tend to agree with Rule 2.  Working with LH2 isn't trivial, but XCOR served 
as
proof it's far short of fluorinated devil-juice.

Rule 3 is I think overstated.  I can see the advantages of embracing it for 
SpaceX
in getting this far, in that it reduced demands on their finite
engineering/development bandwidth to a (barely) sustainable level while still
allowing them to field a (very) commercially viable initial low-orbit 
transport
system with useful (albeit not optimal) GEO capability.

But I think SpaceX's apparent continuing embrace of carved-in-stone Rule
3 may well provide their currently-behind rivals with competitive windows they
can occupy and expand.  We'll see.

Henry V



Other related posts: