[AR] Re: SSTO fuels (was Re: SSTO)

  • From: Henry Vanderbilt <hvanderbilt@xxxxxxxxxxxxxx>
  • To: arocket@xxxxxxxxxxxxx
  • Date: Sat, 17 Feb 2018 06:46:55 -0700

The dangers of a quick list posting versus a multi-page paper! Yup, parts-count matters too, as do minimum-gauge barriers. Below a certain size, development cost per pound of (advanced) system, well, skyrockets.

On 2/16/2018 10:23 PM, David Summers wrote:

Of course, if you follow this line of thought too far you see that what we need to develop is a 100 lb orbital spacecraft.  That way the development funding becomes easy!

On Feb 16, 2018 10:14 PM, "Henry Vanderbilt" <hvanderbilt@xxxxxxxxxxxxxx <mailto:hvanderbilt@xxxxxxxxxxxxxx>> wrote:

    On 2/16/2018 2:49 PM, William Claybaugh wrote:

        To first order and to date, stuff that goes to orbit costs about
        four orders of magnitude more than subsonic stuff, per pound.

        SpaceX has pulled about half an order of magnitude out of that,
        leaving the difference—in their case only—at almost exactly four
        orders of magnitude.


    "About four orders of magnitude more" is at least relatively precise
    - that's an average multiplier of 10^4, 10,000X, give or take.

    But "stuff that goes to orbit" and "subsonic stuff" both could mean
    a lot of different things here.  Could you pin "stuff" down a bit?

    In the meantime, for my best guess from context at what "stuff" you
    have in mind - we've been talking reusable orbital launchers and
    comparing them to subsonic airliners - 10000X more expensive for the
    orbital iron seems seriously high.

    Mind, you still could be talking about either development costs, or
    about cost of the actual "stuff" - vehicle structure and systems -
    that leaves the ground.  But in both cases, 10,000X more for the
    space stuff seems implausible.

    Let's start with a look at some recent examples of actual vehicle
    weights and costs, for a current airliner and a current launch
    vehicle. I'll look at both overall vehicle numbers, and at engines
    broken out separately.  (Rough numbers - no point in worrying very
    far past the first decimal when we're talking four orders of magnitude.)

The 787 airliner weighs ~250,000 lbs dry, and costs ~$250m each. Easy math, that's ~$1000/lb overall.

    A GE GEnx 787 engine weigh in at ~13,000 lb dry, and lists for $22m.
    That's ~$1700/lb.

    Meanwhile, an Atlas 5 with Centaur upper stage weighs about 51,000
    lb dry, and lists for $108m lately.  That's ~$2100/lb.

    Hmm.  2.1 times the cost per pound of a 787.  We seem to be missing
    a few orders of magnitude...  Let's see if they're hiding in the
    engines.

    The Atlas 5 booster engine is a Russian RD-180, ~12,000lb dry, about
    $12m each.  ~$1000/lb.  Hmmmmm...

    But wait, let's be fair.  ULA got a smoking long-term deal from the
    Russians on RD-180 a long while back.  Let's bump that cost to what
    I've seen estimated for a US-manufactured RD-180 clone, ~$50m each,
    and add 20% more for inflation, ~$60m each.  Bringing us to $5000/lb
    for RD-180, or about 3 times GE GEnx's $1700/lb.

    OK, we're only missing three and a half orders of magnitude there.

Let's look at the Atlas 5 upper stage engine, an Aerojet RL-10A5. No published price, but Aerojet has reportedly been severely jacking
    up the tariff on RL-10 in recent years - I've heard to even more
    than the RD-180 costs.

    Let's guess at $15m for an RL-10A5, which has dry mass of ~370lb,
    for a cost of, wow, ~$40,000/lb.  So we're up to ~24 times 787
    engine $/lb.

    We've gotten the discrepancy under three orders of magnitude!  Mind,
    it took a prime example of dinospace-monopoly
    all-the-traffic-will-bear pricing to do it, but still.  Only a bit
    over a factor of 400 off.

    And I've gone on too long already, so I'll just blast through
    development costs.

    787 development cost exclusive of manufacturing is ~$16 billion, or
    ~$64,000 per dry airframe pound of one vehicle.

    Atlas 5 development cost between L-M and USAF was in the
    neighborhood of $2 billion, IIRC.  To be fair, let's bump that to $3
    billion, to account for a share of Centaur upper stage development
    costs plus miscellaneous other no-doubt hidden system costs.

    That's ~$59,000 per Atlas 5 dry airframe pound.  Versus ~$64,000/lb
    for 787.

    Four of our orders of magnitude are missing.


    All snark aside, this bears out what I've been driving at elsewhere.
    Development costs for advanced rockets are not automatically some
    large multiplier of development costs for advanced airliners.

    The actual development cost for advanced aerospace vehicles in
    general tends to scale strongly with dry weight of the vehicle,
    times a per-pound multiplier related to just how hard you're pushing
    the state-of-the-art to maximize performance and minimize weight.

    And in order to make money on new airliners, they're pushing both of
    those factors pretty darn hard.

    There are also other factors that actually favor rockets, like not
    having to optimize everything for high-volume production, and that
    would favor a first-gen reusable SSTO, like not having to press
    nearly as far up all available diminishing-returns curves to be
    competitive.

    I reiterate: Developing a useful first-gen SSTO space transport as a
    private venture?  Some billions, yes.  Tens of billions, no.

    IF you avoid heading down too many of the classic dinospace blind
    alleys, of course.

    Henry Vanderbilt






        On Fri, Feb 16, 2018 at 1:28 PM Henry Vanderbilt
        <hvanderbilt@xxxxxxxxxxxxxx <mailto:hvanderbilt@xxxxxxxxxxxxxx>
        <mailto:hvanderbilt@xxxxxxxxxxxxxx
        <mailto:hvanderbilt@xxxxxxxxxxxxxx>>> wrote:

             Cost-per-airframe/engine pound certainly scales up with
        higher vehicle
             performance.

             Development cost per project has a less linear relationship
        with raw
             vehicle performance - other significant variables also apply.

             See my previous remarks about the different demands of
        achieving a
             profitable performance increment over existing
        mature-technology ailiner
             competition, versus developing a Good Enough version of a
        radically new
             space transport approach that inherently brings with it a
        significant
             performance edge.

             And on the gripping hand, setting up for economic serial
        production of
             hundreds-to-thousands of copies of a big state-of-the-art
        airliner is a
             major expense that developers of advanced rockets generally
        avoid.

             In fact, SpaceX's investment in reusability can be viewed
        as primarily a
             way to support their high (for the old expendable industry)
        flight rates
             with a much smaller/cheaper booster core production
        establishment than
             they'd otherwise need.

             To a first approximation, a successful Mark 1 version
        fast-turnaround
             SSTO space transport will not immediately require mass
        production.  More
             like single digit numbers of hand-built copies.

             Later marks, as the market radically expands, will be a
        different story.
                But the revenue from the early marks will be there to
        help support
             establishing higher-rate production.  Not an issue for
        funding the
             initial push to market.

             Henry Vanderbilt

             On 2/15/2018 3:15 PM, William Claybaugh wrote:
              > Rick:
              >
              > Productivity gains in the aerospace sector have pretty
        much matched
              > inflation over the period since the 747 was developed;
        accordingly, a
              > large passenger aircraft should cost—in today’s
        dollars—pretty
             much the
              > same as a 747 cost in then dollars. $1 Billion by your
        estimate.
              >
              > The other glaring issue here is that a subsonic aircraft
        is not
              > comparable to a Mach 25 spaceship; trying to use the one to
             estimate the
              > cost of the other guarantees underestimating.
              >
              > Bill
              >
              >
              >
              > On Thu, Feb 15, 2018 at 1:42 PM Rick Wills
        <willsrw@xxxxxxxxx <mailto:willsrw@xxxxxxxxx>
             <mailto:willsrw@xxxxxxxxx ;<mailto:willsrw@xxxxxxxxx>>
              > <mailto:willsrw@xxxxxxxxx ;<mailto:willsrw@xxxxxxxxx>
        <mailto:willsrw@xxxxxxxxx ;<mailto:willsrw@xxxxxxxxx>>>> wrote:
              >
              >     Henry
              >
              >     I'll throw my 2 cents in here.
              >
              >     $20B should be an upper limit for spaceplane/launch
        vehicle
              >     development.  My estimate is $14B to $17B.  A
        reusable orbital
              >     launch  vehicle may or not be an SSTO but it needs
        to be 100%
              >     reusable.  My rational for the estimate is Boeing
        spent $1
             Billion
              >     to develop the 747 with first flight in  1969.
        Today, that's
             roughly
              >     $7B.   Rough order of magnitude is double Boeing's
        cost; than add
              >     20% for cost overruns.  I can see why some people
        might argue
             $20B
              >     to $40B; Boeing Dreamliner is reported to have cost
        $30B to
             develop.
              >     However, SpaceX could hit 100% reusable with a
        reusable upper
             stage.
              >
              >     On Monday afternoon, I spoke to freshman mechanical
        and aerospace
              >     engineering students at the University of Dayton on the
             subject of
              >     the Engineering Profession.  In my "lessons learned"
        section, I
              >     discussed bias.  Yep, we all got them.   As an
        example, I
             discussed
              >     my bias about what a reusable orbital launch vehicle
        would
             like.  My
              >     long held view was a reusable launch vehicle would
        be "aircraft
              >     like":  wings, landing gear, etc, and of course a
        pilot.  (full
              >     disclosure, I hold a commercial pilot rating and am
             engineer).  In
              >     preparing for the talk, I realize this bias when as
        far back
             as my
              >     childhood looking at Pratt & Coggins book "By
        Spaceship to the
              >     Moon".  It's 1950 technology but the science is
        solid for the
             time.
              >       In it, there is a nice drawing of a large winged
        vehicle, they
              >     called it a supply ship.  The vehicle was taking off
        horizontally
              >     with a rocket powered sled.  My five year old self
        looked at that
              >     and thought, "that's neat".  I now understand the
        technical,
              >     developmental, political, and financial issues with
        these
             sorts of
     >     system configurations but the bias was implanted.  Now Space X
              >     comes along and shows how recovering an intact undamaged
             first stage
              >     can return a profit.    Biases do die hard, but it's
        hard to
             argue
              >     with success.
              >
              >     Take Care and Be Safe,
              >
              >     Rick Wills
              >     Still waiting for Buck Rogers
              >
              >     -----Original Message-----
              >     From: arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>
             <mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>>
              >     <mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>
             <mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>>>
              >     [mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>
             <mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>>
              >     <mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>
             <mailto:arocket-bounce@xxxxxxxxxxxxx
        <mailto:arocket-bounce@xxxxxxxxxxxxx>>>] On Behalf Of Henry
        Vanderbilt
              >     Sent: Thursday, February 15, 2018 1:54 PM
              >     To: arocket@xxxxxxxxxxxxx
        <mailto:arocket@xxxxxxxxxxxxx> <mailto:arocket@xxxxxxxxxxxxx
        <mailto:arocket@xxxxxxxxxxxxx>>
             <mailto:arocket@xxxxxxxxxxxxx
        <mailto:arocket@xxxxxxxxxxxxx> <mailto:arocket@xxxxxxxxxxxxx
        <mailto:arocket@xxxxxxxxxxxxx>>>
              >     Subject: [AR] Re: SSTO fuels (was Re: SSTO)
              >
              >     On 2/13/2018 7:14 PM, William Claybaugh wrote:
              >      > I have seen that paper.  For something as technically
             (much less
              >      > economically) difficult as SSTO it seems a little
        light:
             even much
              >      > more detailed analysis doesn’t often lead to much
             confidence that I
              >      > ought to recommend dropping $20 or $40 billion on
        one solution
              >     over another.
              >
              >     My two cents worth: If fielding a useful SSTO space
        transport is
              >     costing you $20 to $40 billion, you're doing
        something very
             wrong.
              >
              >     That's the sort of price tag you get by farming it
        out to the
              >     existing cost-plus government aerospace houses,
        supervised by an
              >     existing high-overhead government R&D bureaucracy.
              >
              >     At the end of that process you may or may not get a
        useful space
              >     transport, but lots of people will have had decades
        of low-stress
              >     white-collar job security.  Fine if that's your
        objective -
              >     typically if you're a Congressman and they're your
             constituents - if
              >     you actually care about building useful space
        transportation,
             not so
              >     much.
              >
              >     Done as previously described, build your own private
        team up
             doing
              >     methodical risk-reduction then development (as with
        SpaceX
             and Blue)
              >     it should be perhaps a tenth of that.
              >
              >     Henry V
              >
              >
              >



Other related posts: